Copied to
clipboard

G = C3×C42⋊C22order 192 = 26·3

Direct product of C3 and C42⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C42⋊C22, C4≀C25C6, C4○D46C12, (C6×D4)⋊22C4, C424(C2×C6), (C6×Q8)⋊18C4, C4.73(C6×D4), (C2×D4)⋊10C12, (C2×Q8)⋊10C12, D4.7(C2×C12), C42⋊C24C6, (C4×C12)⋊34C22, (C2×C12).520D4, C12.478(C2×D4), C4.8(C22×C12), Q8.12(C2×C12), C22.13(C6×D4), C23.12(C3×D4), (C22×C6).30D4, (C6×M4(2))⋊31C2, M4(2)⋊10(C2×C6), (C2×M4(2))⋊13C6, C12.84(C22⋊C4), (C2×C12).897C23, C12.153(C22×C4), (C3×M4(2))⋊39C22, (C22×C12).413C22, (C3×C4≀C2)⋊13C2, (C3×C4○D4)⋊10C4, (C2×C4).25(C3×D4), (C2×C4).23(C2×C12), C4○D4.14(C2×C6), (C6×C4○D4).21C2, (C2×C4○D4).13C6, (C3×D4).29(C2×C4), (C2×C6).408(C2×D4), C4.16(C3×C22⋊C4), C2.24(C6×C22⋊C4), (C3×Q8).31(C2×C4), (C2×C12).196(C2×C4), C6.112(C2×C22⋊C4), (C2×C4).72(C22×C6), (C22×C4).37(C2×C6), (C3×C42⋊C2)⋊25C2, (C2×C6).83(C22⋊C4), (C3×C4○D4).52C22, C22.22(C3×C22⋊C4), SmallGroup(192,854)

Series: Derived Chief Lower central Upper central

C1C4 — C3×C42⋊C22
C1C2C4C2×C4C2×C12C3×M4(2)C3×C4≀C2 — C3×C42⋊C22
C1C2C4 — C3×C42⋊C22
C1C12C22×C12 — C3×C42⋊C22

Generators and relations for C3×C42⋊C22
 G = < a,b,c,d,e | a3=b4=c4=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1c, ebe=bc2, cd=dc, ce=ec, de=ed >

Subgroups: 258 in 154 conjugacy classes, 78 normal (46 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C22×C6, C4≀C2, C42⋊C2, C2×M4(2), C2×C4○D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C3×M4(2), C3×M4(2), C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C3×C4○D4, C42⋊C22, C3×C4≀C2, C3×C42⋊C2, C6×M4(2), C6×C4○D4, C3×C42⋊C22
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C2×C12, C3×D4, C22×C6, C2×C22⋊C4, C3×C22⋊C4, C22×C12, C6×D4, C42⋊C22, C6×C22⋊C4, C3×C42⋊C22

Smallest permutation representation of C3×C42⋊C22
On 48 points
Generators in S48
(1 21 17)(2 22 18)(3 13 23)(4 14 24)(5 11 15)(6 12 16)(7 20 10)(8 19 9)(25 39 41)(26 40 42)(27 37 43)(28 38 44)(29 46 36)(30 47 33)(31 48 34)(32 45 35)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 13 5 7)(2 14 6 8)(3 15 10 17)(4 16 9 18)(11 20 21 23)(12 19 22 24)(25 30 27 32)(26 31 28 29)(33 43 35 41)(34 44 36 42)(37 45 39 47)(38 46 40 48)
(1 47)(2 40)(3 27)(4 31)(5 45)(6 38)(7 39)(8 46)(9 29)(10 25)(11 35)(12 44)(13 37)(14 48)(15 32)(16 28)(17 30)(18 26)(19 36)(20 41)(21 33)(22 42)(23 43)(24 34)
(1 14)(2 7)(3 16)(4 17)(5 8)(6 13)(9 15)(10 18)(11 19)(12 23)(20 22)(21 24)(25 26)(27 28)(29 32)(30 31)(33 34)(35 36)(37 38)(39 40)(41 42)(43 44)(45 46)(47 48)

G:=sub<Sym(48)| (1,21,17)(2,22,18)(3,13,23)(4,14,24)(5,11,15)(6,12,16)(7,20,10)(8,19,9)(25,39,41)(26,40,42)(27,37,43)(28,38,44)(29,46,36)(30,47,33)(31,48,34)(32,45,35), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,5,7)(2,14,6,8)(3,15,10,17)(4,16,9,18)(11,20,21,23)(12,19,22,24)(25,30,27,32)(26,31,28,29)(33,43,35,41)(34,44,36,42)(37,45,39,47)(38,46,40,48), (1,47)(2,40)(3,27)(4,31)(5,45)(6,38)(7,39)(8,46)(9,29)(10,25)(11,35)(12,44)(13,37)(14,48)(15,32)(16,28)(17,30)(18,26)(19,36)(20,41)(21,33)(22,42)(23,43)(24,34), (1,14)(2,7)(3,16)(4,17)(5,8)(6,13)(9,15)(10,18)(11,19)(12,23)(20,22)(21,24)(25,26)(27,28)(29,32)(30,31)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)>;

G:=Group( (1,21,17)(2,22,18)(3,13,23)(4,14,24)(5,11,15)(6,12,16)(7,20,10)(8,19,9)(25,39,41)(26,40,42)(27,37,43)(28,38,44)(29,46,36)(30,47,33)(31,48,34)(32,45,35), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,5,7)(2,14,6,8)(3,15,10,17)(4,16,9,18)(11,20,21,23)(12,19,22,24)(25,30,27,32)(26,31,28,29)(33,43,35,41)(34,44,36,42)(37,45,39,47)(38,46,40,48), (1,47)(2,40)(3,27)(4,31)(5,45)(6,38)(7,39)(8,46)(9,29)(10,25)(11,35)(12,44)(13,37)(14,48)(15,32)(16,28)(17,30)(18,26)(19,36)(20,41)(21,33)(22,42)(23,43)(24,34), (1,14)(2,7)(3,16)(4,17)(5,8)(6,13)(9,15)(10,18)(11,19)(12,23)(20,22)(21,24)(25,26)(27,28)(29,32)(30,31)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48) );

G=PermutationGroup([[(1,21,17),(2,22,18),(3,13,23),(4,14,24),(5,11,15),(6,12,16),(7,20,10),(8,19,9),(25,39,41),(26,40,42),(27,37,43),(28,38,44),(29,46,36),(30,47,33),(31,48,34),(32,45,35)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,13,5,7),(2,14,6,8),(3,15,10,17),(4,16,9,18),(11,20,21,23),(12,19,22,24),(25,30,27,32),(26,31,28,29),(33,43,35,41),(34,44,36,42),(37,45,39,47),(38,46,40,48)], [(1,47),(2,40),(3,27),(4,31),(5,45),(6,38),(7,39),(8,46),(9,29),(10,25),(11,35),(12,44),(13,37),(14,48),(15,32),(16,28),(17,30),(18,26),(19,36),(20,41),(21,33),(22,42),(23,43),(24,34)], [(1,14),(2,7),(3,16),(4,17),(5,8),(6,13),(9,15),(10,18),(11,19),(12,23),(20,22),(21,24),(25,26),(27,28),(29,32),(30,31),(33,34),(35,36),(37,38),(39,40),(41,42),(43,44),(45,46),(47,48)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F3A3B4A4B4C4D4E4F···4K6A6B6C···6H6I6J6K6L8A8B8C8D12A12B12C12D12E···12J12K···12V24A···24H
order122222233444444···4666···6666688881212121212···1212···1224···24
size112224411112224···4112···24444444411112···24···44···4

66 irreducible representations

dim1111111111111111222244
type+++++++
imageC1C2C2C2C2C3C4C4C4C6C6C6C6C12C12C12D4D4C3×D4C3×D4C42⋊C22C3×C42⋊C22
kernelC3×C42⋊C22C3×C4≀C2C3×C42⋊C2C6×M4(2)C6×C4○D4C42⋊C22C6×D4C6×Q8C3×C4○D4C4≀C2C42⋊C2C2×M4(2)C2×C4○D4C2×D4C2×Q8C4○D4C2×C12C22×C6C2×C4C23C3C1
# reps1411122248222448316224

Matrix representation of C3×C42⋊C22 in GL6(𝔽73)

6400000
0640000
001000
000100
000010
000001
,
7200000
110000
000723263
00102763
00004123
00001932
,
7200000
0720000
0046000
0004600
0000460
0000046
,
72710000
010000
0001210
000100
0016100
00071072
,
7200000
0720000
000726135
00720720
00001238
0000261

G:=sub<GL(6,GF(73))| [64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,32,27,41,19,0,0,63,63,23,32],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,46],[72,0,0,0,0,0,71,1,0,0,0,0,0,0,0,0,1,0,0,0,12,1,61,71,0,0,1,0,0,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,61,72,12,2,0,0,35,0,38,61] >;

C3×C42⋊C22 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes C_2^2
% in TeX

G:=Group("C3xC4^2:C2^2");
// GroupNames label

G:=SmallGroup(192,854);
// by ID

G=gap.SmallGroup(192,854);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,1059,4204,2111,172,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^4=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1*c,e*b*e=b*c^2,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
×
𝔽