direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×C42⋊C22, C4≀C2⋊5C6, C4○D4⋊6C12, (C6×D4)⋊22C4, C42⋊4(C2×C6), (C6×Q8)⋊18C4, C4.73(C6×D4), (C2×D4)⋊10C12, (C2×Q8)⋊10C12, D4.7(C2×C12), C42⋊C2⋊4C6, (C4×C12)⋊34C22, (C2×C12).520D4, C12.478(C2×D4), C4.8(C22×C12), Q8.12(C2×C12), C22.13(C6×D4), C23.12(C3×D4), (C22×C6).30D4, (C6×M4(2))⋊31C2, M4(2)⋊10(C2×C6), (C2×M4(2))⋊13C6, C12.84(C22⋊C4), (C2×C12).897C23, C12.153(C22×C4), (C3×M4(2))⋊39C22, (C22×C12).413C22, (C3×C4≀C2)⋊13C2, (C3×C4○D4)⋊10C4, (C2×C4).25(C3×D4), (C2×C4).23(C2×C12), C4○D4.14(C2×C6), (C6×C4○D4).21C2, (C2×C4○D4).13C6, (C3×D4).29(C2×C4), (C2×C6).408(C2×D4), C4.16(C3×C22⋊C4), C2.24(C6×C22⋊C4), (C3×Q8).31(C2×C4), (C2×C12).196(C2×C4), C6.112(C2×C22⋊C4), (C2×C4).72(C22×C6), (C22×C4).37(C2×C6), (C3×C42⋊C2)⋊25C2, (C2×C6).83(C22⋊C4), (C3×C4○D4).52C22, C22.22(C3×C22⋊C4), SmallGroup(192,854)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C42⋊C22
G = < a,b,c,d,e | a3=b4=c4=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1c, ebe=bc2, cd=dc, ce=ec, de=ed >
Subgroups: 258 in 154 conjugacy classes, 78 normal (46 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C22×C6, C4≀C2, C42⋊C2, C2×M4(2), C2×C4○D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C3×M4(2), C3×M4(2), C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C3×C4○D4, C42⋊C22, C3×C4≀C2, C3×C42⋊C2, C6×M4(2), C6×C4○D4, C3×C42⋊C22
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C2×C12, C3×D4, C22×C6, C2×C22⋊C4, C3×C22⋊C4, C22×C12, C6×D4, C42⋊C22, C6×C22⋊C4, C3×C42⋊C22
(1 21 17)(2 22 18)(3 13 23)(4 14 24)(5 11 15)(6 12 16)(7 20 10)(8 19 9)(25 39 41)(26 40 42)(27 37 43)(28 38 44)(29 46 36)(30 47 33)(31 48 34)(32 45 35)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 13 5 7)(2 14 6 8)(3 15 10 17)(4 16 9 18)(11 20 21 23)(12 19 22 24)(25 30 27 32)(26 31 28 29)(33 43 35 41)(34 44 36 42)(37 45 39 47)(38 46 40 48)
(1 47)(2 40)(3 27)(4 31)(5 45)(6 38)(7 39)(8 46)(9 29)(10 25)(11 35)(12 44)(13 37)(14 48)(15 32)(16 28)(17 30)(18 26)(19 36)(20 41)(21 33)(22 42)(23 43)(24 34)
(1 14)(2 7)(3 16)(4 17)(5 8)(6 13)(9 15)(10 18)(11 19)(12 23)(20 22)(21 24)(25 26)(27 28)(29 32)(30 31)(33 34)(35 36)(37 38)(39 40)(41 42)(43 44)(45 46)(47 48)
G:=sub<Sym(48)| (1,21,17)(2,22,18)(3,13,23)(4,14,24)(5,11,15)(6,12,16)(7,20,10)(8,19,9)(25,39,41)(26,40,42)(27,37,43)(28,38,44)(29,46,36)(30,47,33)(31,48,34)(32,45,35), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,5,7)(2,14,6,8)(3,15,10,17)(4,16,9,18)(11,20,21,23)(12,19,22,24)(25,30,27,32)(26,31,28,29)(33,43,35,41)(34,44,36,42)(37,45,39,47)(38,46,40,48), (1,47)(2,40)(3,27)(4,31)(5,45)(6,38)(7,39)(8,46)(9,29)(10,25)(11,35)(12,44)(13,37)(14,48)(15,32)(16,28)(17,30)(18,26)(19,36)(20,41)(21,33)(22,42)(23,43)(24,34), (1,14)(2,7)(3,16)(4,17)(5,8)(6,13)(9,15)(10,18)(11,19)(12,23)(20,22)(21,24)(25,26)(27,28)(29,32)(30,31)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)>;
G:=Group( (1,21,17)(2,22,18)(3,13,23)(4,14,24)(5,11,15)(6,12,16)(7,20,10)(8,19,9)(25,39,41)(26,40,42)(27,37,43)(28,38,44)(29,46,36)(30,47,33)(31,48,34)(32,45,35), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,5,7)(2,14,6,8)(3,15,10,17)(4,16,9,18)(11,20,21,23)(12,19,22,24)(25,30,27,32)(26,31,28,29)(33,43,35,41)(34,44,36,42)(37,45,39,47)(38,46,40,48), (1,47)(2,40)(3,27)(4,31)(5,45)(6,38)(7,39)(8,46)(9,29)(10,25)(11,35)(12,44)(13,37)(14,48)(15,32)(16,28)(17,30)(18,26)(19,36)(20,41)(21,33)(22,42)(23,43)(24,34), (1,14)(2,7)(3,16)(4,17)(5,8)(6,13)(9,15)(10,18)(11,19)(12,23)(20,22)(21,24)(25,26)(27,28)(29,32)(30,31)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48) );
G=PermutationGroup([[(1,21,17),(2,22,18),(3,13,23),(4,14,24),(5,11,15),(6,12,16),(7,20,10),(8,19,9),(25,39,41),(26,40,42),(27,37,43),(28,38,44),(29,46,36),(30,47,33),(31,48,34),(32,45,35)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,13,5,7),(2,14,6,8),(3,15,10,17),(4,16,9,18),(11,20,21,23),(12,19,22,24),(25,30,27,32),(26,31,28,29),(33,43,35,41),(34,44,36,42),(37,45,39,47),(38,46,40,48)], [(1,47),(2,40),(3,27),(4,31),(5,45),(6,38),(7,39),(8,46),(9,29),(10,25),(11,35),(12,44),(13,37),(14,48),(15,32),(16,28),(17,30),(18,26),(19,36),(20,41),(21,33),(22,42),(23,43),(24,34)], [(1,14),(2,7),(3,16),(4,17),(5,8),(6,13),(9,15),(10,18),(11,19),(12,23),(20,22),(21,24),(25,26),(27,28),(29,32),(30,31),(33,34),(35,36),(37,38),(39,40),(41,42),(43,44),(45,46),(47,48)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | ··· | 4K | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | ··· | 12V | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | ··· | 4 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C4 | C4 | C4 | C6 | C6 | C6 | C6 | C12 | C12 | C12 | D4 | D4 | C3×D4 | C3×D4 | C42⋊C22 | C3×C42⋊C22 |
kernel | C3×C42⋊C22 | C3×C4≀C2 | C3×C42⋊C2 | C6×M4(2) | C6×C4○D4 | C42⋊C22 | C6×D4 | C6×Q8 | C3×C4○D4 | C4≀C2 | C42⋊C2 | C2×M4(2) | C2×C4○D4 | C2×D4 | C2×Q8 | C4○D4 | C2×C12 | C22×C6 | C2×C4 | C23 | C3 | C1 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 8 | 2 | 2 | 2 | 4 | 4 | 8 | 3 | 1 | 6 | 2 | 2 | 4 |
Matrix representation of C3×C42⋊C22 ►in GL6(𝔽73)
64 | 0 | 0 | 0 | 0 | 0 |
0 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 32 | 63 |
0 | 0 | 1 | 0 | 27 | 63 |
0 | 0 | 0 | 0 | 41 | 23 |
0 | 0 | 0 | 0 | 19 | 32 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 0 | 0 | 0 |
0 | 0 | 0 | 46 | 0 | 0 |
0 | 0 | 0 | 0 | 46 | 0 |
0 | 0 | 0 | 0 | 0 | 46 |
72 | 71 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 61 | 0 | 0 |
0 | 0 | 0 | 71 | 0 | 72 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 61 | 35 |
0 | 0 | 72 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 12 | 38 |
0 | 0 | 0 | 0 | 2 | 61 |
G:=sub<GL(6,GF(73))| [64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,32,27,41,19,0,0,63,63,23,32],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,46],[72,0,0,0,0,0,71,1,0,0,0,0,0,0,0,0,1,0,0,0,12,1,61,71,0,0,1,0,0,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,61,72,12,2,0,0,35,0,38,61] >;
C3×C42⋊C22 in GAP, Magma, Sage, TeX
C_3\times C_4^2\rtimes C_2^2
% in TeX
G:=Group("C3xC4^2:C2^2");
// GroupNames label
G:=SmallGroup(192,854);
// by ID
G=gap.SmallGroup(192,854);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,1059,4204,2111,172,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=c^4=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1*c,e*b*e=b*c^2,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations